January 21, 2017

Hiroshi Michiwaki
Expanding Compound Fractions Using Division by Zero
Theorem Given two nonnegative integers n, m, when
n—0xm>n—1xm>n—-2%xm>->n—kxm=r (keN,: Nonnegative integers ) (1)
and r is the smallest nonnegative integer that satisfies (1),
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where ---r denotes the remainder obtained after dividing n by m.
Proof When m# 0,

i n>m
Ifn=km+r(k€XA0=r<m),itisclear.
ii. n=m
In (1),
n—0xm>n—1xm=0 (kE&N,: Nonnegative integers )
implies that £=1 A r=0. This yields
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iii. n<m
In (1),
n—0xm=n (kE&N,: Nonnegative integers )
implies that =0 A r=n. This yields
n
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iv. n=0
In (1),
n—0xm=n [keN,: Nonnegative integers )
implies that k=0 A r =n=0. That yields
n
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When m =0,
In (1),

n—kx0=n (keN,: Nonnegative integers )
implies that k =0 A r = n. Therefore,
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Consequently,

n
=>E=D---n A n=0x04+r=0x04+n=n

QED

It can be seen from the above that it is possible to expand a compound fraction in a natural form by
letting the denominator (divisor) equal 0.

Moreover, in the relation
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if m=0and k #0, it should be noted that

r T .
k4+—=k— (4)
m m

cannot lead to
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The reason for this is that (4)

r r r+km r km r m

k+—=k—= =—+ —+—k
m m m m m m m
m
k=—k
m
implies that
m it 6
~= (6)

However, by Theorem,
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which is inconsistent. That is, it should be noted that the zero-denominator fraction that is obtained
when m = 0 cannot be reduced to a nonzero denominator.



