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The Density Principle Solved with a Graph, and Division by Zero 

 
Theorem It may be beneficial to graph the density principle examined in the Division by Zero paper 
#39 (“The Density Principle and Division by Zero with the Resulting Remainder”) and use the graph 
to demonstrate the principle. To this end, a coordinate system is considered with area along the x-axis 
and mass along the y-axis. In this coordinate system, let the maximum of the x-axis be 𝑠₀, which is the 
surface area of A₀, the bottom surface of a given cylinder. If some point along the x-axis between the 
origin and 𝑠₀ (the bottom surface area of the cylinder) is the target surface area 𝑠, the mass 
corresponding to that area, that is, the mass 𝑀in sitting on top of the target surface A, is considered. 
The mass on top of A₀ is the total mass 𝑀. As the slope σ of the graph of the mass 𝑀in with respect to 
the target surface area 𝑠 is a function of 𝑠, it is expressed as σ = σ(𝑠). If now the cylinder has a 
uniform mass distribution ρ, then at every point from where the area is greater than 0 up to 𝑠₀ (the 
bottom surface area of the cylinder), the target surface area 𝑠 and the partial mass atop it, that is, the 
mass 𝑀in sitting on top of the target surface, is proportional with constant σ. 
 

 
Fig 1. Density principle and division by zero: σ(𝑠) = const > 0 

 
It is now assumed that starting from the state where the target surface area 𝑠 is at its maximum, equal 
to the bottom surface area of the cylinder 𝑠₀, it is gradually shrunk. After shrinking it to a suitable 
extent, we obtain what is shown in Fig. 1, where the mass 𝑀in sitting on the target surface area 𝑠 can 
be determined by the linear equation 𝑀in=σ𝑠, and the total mass 𝑀 can be determined by 𝑀=σ𝑠+ 𝑀out, 
a constant linear function of 𝑠. 
 
To simplify the equations discussed so far, they will be reexamined by letting the bottom surface area 
of the cylinder 𝑠₀ = 100, the total mass 𝑀 = 100, and the linear slope σ = 1 (𝑠 > 0). When the target 
surface area 𝑠 is at its maximum, i.e., equal to the bottom surface area of the cylinder 𝑠₀, the ratio of 
the total mass 𝑀 to the target surface area 𝑠, by way of compound numbers, is 
 



 

 

  
 
where the leading number 1 is the value of σ. Then, if 𝑠 is shrunk by only 1/100, 
 

  
 
Using compound numbers as in the previous expression, it can be seen that the ratio reaches a value  
slightly larger than 1. The leading number 1 is the value of σ as well. 
 
As these formulations are rather counter-intuitive, the relations among the divided, divisor, quotient, 
and remainder will now be reorganized. Here, the initial numerator corresponds to the divisor, the 
denominator to the divisor, the leading number to the quotient, and the subsequent numerator to the 
remainder. The divisor does not change; thus, this relationship is expressed as 
 

 

 
 
In this sequence of calculations, the first term in the expression following the arrow ⇒  corresponds to 
the size of the mass 𝑀in sitting on the area, which is represented by the vertical blue line in Fig. 1 
(parallel to the mass axis), and the second term corresponds to the mass 𝑀out sitting outside the area, 
that is, the remainder, which is represented by the vertical green line (parallel to the mass axis).  
 
Thus, if 𝑠 = 0, then 
 



 

 

  
 
As is clearly seen in Fig. 2, the target surface area 𝑠 is 0; thus, 𝑀in, the mass on it, is also 0. Moreover, 
𝑀out, the mass outside it, accounts for the entire total mass 𝑀 and is thus 100. 
 

 
Fig. 2. Density principle and division by zero: σ(𝑠) = 0 

 
Furthermore, if the leading number is 1 in (3) as well, then 
 

  
 
However, although ∞ × 0 implies that there is not even a single ∞, it is undefined  as its magnitude is 
still unclear. That is, (4) is absurd, and the equation does not hold true. This will happen even if the 
leading number is changed to any real number other than 0. This shows that 
 

  
 
is absurd. Consequently, it is clear that 100 = □ × 0 + 100 is true if and only if □ = 0, yielding 100 = 0 
× 0 + 100. Based on this, it is clear that 
 

  
 
What follows is an alternative proof for this. 
 
For two real numbers 𝑎, b ≥ 0, let 
 



 

 

  
 
and  
 

 
 
Then, 
 

  
 
Hence, (6) is obtained: 
 

  
 
Furthermore, from the above hypothesis, the following holds for two real numbers 𝑎, b ≥ 0 ∧ 𝑎 ≥ 𝑛𝑏 
(𝑛 ∈ N): 
 

  
 
Thus, if 𝑏 = 0, then 
 

  
 

This shows that when (3) is written in the form of a compound fraction, 
 

dividend 100

divisor 0
=

converted dividend[A1] 0 + remainder 100

divisor 0
= quotient 0 

remainder 100

divisor 0
 

 
    ⇒ dividend 100 = quotient 0 divisor 0 + remainder 100   (3') 
 
the quotient is uniquely determined to be 0, based on (6). Consequently, (3) holds true. Generally, the 
following is true: 
 
ୢ୧୴୧ୢୣ୬ୢ 

ୢ୧୴୧ୱ୭୰ 
= quotient 0 ⋯ remainder 𝑎 ∧ dividend 𝑎 = quotient 0 × divisor 0 + remainder 𝑎 

(12) 
 
It should be noted that the converted dividend in (3′) is the dividend obtained after the original 
dividend splits into the sum of a secondary dividend and the remainder. When the divisor is not 0, the 
dividend can be split arbitrarily; however, when the divisor is 0, the only way to split the dividend so 
that the number can be turned into a compound fraction results in a converted dividend of 0. That is, 
when the divisor is 0, the quotient is uniquely 0, and in terms of reducible set theory, the remainder is 
uniquely equal to the dividend. This may be redundant, but if 𝑏 = 0 when 𝑎 ≠ 0, then 𝑥 ≠ 0, and thus 
 



 

 

  
 
Considering 𝑥 = 1 yields 
 

  
 
This shows that a ratio (comparison) with 0 only makes it possible to compare the two qualitative 
states of “being” and “non-being.” This shows that a given size cannot be quantitatively measured 
using the size itself as reference, because the dividend, which is the reference size, is 0. Furthermore, 
when there is a difference in the size of the numerator, no conclusion can be drawn. Nevertheless, it 
does show that there is a state of “being,” which is distinct from the state of “non-being.” 
 
The notation of compound numbers is as follows. Fractional equalities will be denoted using three 
real numbers 𝑎, b,  as 
 

  
 
and 𝑎 is called the leading number, 𝑏 the divisor, 𝑎𝑏+𝑐 the dividend, and 𝑐 the remainder. Then, if the 
leading number 𝑎 is called the general quotient, the general quotient 𝑎 that minimizes the remainder 𝑐 
is equivalent to the quotient 𝐴 of the previous division. That is, 
 

  
 
in which case 
 

 
 
and the following relation between the set {𝑎} of general quotients 𝑎 and quotient 𝐴, as well as 
between the set {𝑐} of remainders 𝑐 and 𝐶, is true: 
 

 
 
Using the above notation for compound numbers, (7) can be written as 
 

  
 
Then, Equation (8) will be established 
 

  
 
whereupon if 𝑏 = 0, 
 

  
 



 

 

and thus (9) 
 

  
holds true. In this case, by (9), Equation (19) is uniquely expressed as 
 

 
Moreover, by the definition of compound numbers, the leading number 0 in (20) is an element in the 
set of general quotients; moreover, it is the largest in the set, as (20) is uniquely true. It is also 
equivalent to the quotient of the previous division. Consequently, 
 

 
is uniquely true. 
 
A coordinate system with area along the x-axis and mass along the y-axis will again be considered. In 
this coordinate system, let the maximum of the x-axis be 𝑠₀, which is the surface area of A₀, the 
bottom surface of a given cylinder. Let A be the pressure receptor of a flat and perfectly rigid body, 
with a surface area 𝑠 at some point along the x-axis between the origin and 𝑠₀ (the bottom surface area 
of the cylinder) such that A receives the total mass 𝑀on of a cylinder with a uniform base. That is, 𝑀on, 
the total mass acting on pressure receptor A, is considered. Of course, the mass on the underside of 
the cylinder A₀ is equal to the mass 𝑀. Then, the slope σ of the graph of the mass 𝑀on with respect to 
the surface area of the pressure receptor 𝑠 is expressed as a function of 𝑠, σ = σ(𝑠). Now, if the 
cylinder has a uniform mass distribution ρ and is a perfectly rigid body, then at every point from 
where the area is greater than 0 up to 𝑠₀ (the bottom surface area of the cylinder), the target surface 
area 𝑠 and the total mass 𝑀 of the cylinder sitting atop it (the mass 𝑀on acting on the pressure 
receptor) are in a linear relationship with the size of σ(𝑠), that is, the slope of the graph σ, as it 
changes. 
 
It is now assumed that starting from the state where the surface area of the pressure receptor 𝑠 is at its 
maximum, equal to the bottom surface area of the cylinder 𝑠₀, 𝑠 gradually shrinks. After it shrinks to 
a suitable extent, we obtain what is shown in Fig. 3, where the mass 𝑀on on the surface area of the 
pressure receptor 𝑠 remains constant and can be found by the linear equation 𝑀on = σ(𝑠)𝑠. That is, σ(𝑠) 
is inversely proportional to 𝑠. Of course, the total mass 𝑀 is expressed as the sum of 𝑀on, the mass on 
the surface area of the pressure receptor A, and 𝑀off, the mass not on the surface area of the pressure 
receptor, yielding 
 

  
 
This implies that the total mass 𝑀 can be expressed as 
 

 
 



 

 

 
Fig. 3. Density principle and division by zero: [MATH] 

 
To simplify the equations discussed so far, they will be reexamined by letting the bottom surface area 
of the cylinder 𝑠₀= 100, the total mass 𝑀 = 100, and the linear slope σ(s) ≧ 1 (s > 0). When the target 
surface area 𝑠 is equal to the bottom surface area of the cylinder 𝑠₀, to determine the ratio of the total 
mass 𝑀 to the surface area of the pressure receptor 𝑠, if the dividend is split into the sum of two 
numbers to minimize the remainder, it can be seen that, by way of compound numbers, it is 
 

 
 
where the leading number 1 is the value of σ. Then, if 𝑠 is shrunk by only 1/100, 
 

 
 
Using compound numbers as in the previous expression, it can be seen that the ratio reaches a value  
slightly larger than 1. The leading number 1.0̇1 ̇is here the value of σ as well. 
 
As before, the relations among the divided, divisor, quotient, and remainder below will be organized. 
Here, the initial numerator corresponds to the divisor, the denominator to the divisor, the leading 
number to the quotient, and the subsequent numerator to the remainder. The divisor does not change; 
thus, this relationship is expressed as 
 



 

 

 
 
According to the density principle 0/0 = 0 as well as (21),  
 

  
 
is uniquely true. This also takes the exact same form as (3), which expresses Fig. 2 numerically. The 
graph in Fig. 4 is similarly equivalent to Fig. 2 as well. The only difference between these two 
systems is that the former has a surface outside the target to support the mass sitting outside it, 
whereas the latter has no surface outside the pressure receptor to support the mass sitting outside it. 
This implies that in the former, the cylinder does not undergo any changes even when the target 
surface area is 0, whereas in the latter, when the surface area of the pressure receptor is 0, there ceases 
to be any surface capable of supporting any of the cylinder’s mass, causing the cylinder to fall. 
 



 

 

 
Fig. 4. Density principle and division by zero: σ(𝑠)=0 

 
So far, the density principle has been explained in terms of ratios and division by zero, using mass 
surface density as an example. This could be called the ratio principle. Some examples will now be 
used to deepen the understanding of the density principle (ratio principle) as seen in Figs. 3 and 4. The 
density principle will be first considered followed by the ratio principle. For the former, a 
disappearing island is considered. This island has a total area of 100 ha and is home to 100 residents. 
There are no births or deaths, nor is there immigration from other areas. However, there is one 
problem: owing to global warming and sea level rise, the area of this island decreases by 1 ha every 
year. 
 
The current population density is 1 person/ha; in 20 years, it will be 1.25 people/ha. What will it be in 
100 years? 
 
Current population density:  
 

 
ଵ[୮ୣ୭୮୪ୣ]

ଵ[୦ୟ]
= 1[people/ha]

[୮ୣ୭୮୪ୣ]

ଵ[୦ୟ]
= 1[people/ha] remainder 0 [people] 

 
Population density in 20 years: 
 

100[people]

100 − 1 × 20[ha]
=

100[people]

80[ha]
= 1.25[people/ha] 

0[people]

80[ha]
= 1.25[people/ha] remainder 0 [people] 

 
Population density in 50 years: 
 

100[people]

100 − 1 × 50[ha]
=

100[people]

50[ha]
= 2[people/ha] 

0[people]

50[ha]
= 2[people/ha] remainder 0 [people] 

 
Population density in 90 years: 
 

100[people]

100 − 1 × 90[ha]
=

100[people]

10[ha]
= 10[people/ha] 

0[people]

10[ha]
= 10[people/ha] remainder 0 [people] 

 



 

 

Population density in 99 years: 
 

100[people]

100 − 1 × 99[ha]
=

100[people]

1[ha]
= 100[people/ha] 

0[people]

1[ha]
= 100[people/ha] remainder 0 [people] 

 
That is, 100 people on 1 ha of land. What will happen 1 year after that? After 100 years, the island 
will be completely submerged; hence, its surface area will be 0. However, as there are no births, 
deaths, or immigration, the residents will have become sea-people floating in the sea. This is the same 
as trying to determine the population density if there were no island to begin with. That is, as there is 
no “island population density” in the water, where there is no island, the population density is null φ 
whether people are there or not (in the sense of the population density of the island). This is the same 
as being zero. Thus, the case where there is no island to begin with is mathematically equivalent to the 
case where the island disappears. Consequently,  
 
Population density in 100 years: 
 

100[people]

100 − 1 × 100[ha]
=

100[people]

0[ha]
= 0[people/ha] 

100[people]

0[ha]
= 0[people/ha] remainder 100 [people] 

 
Moreover, for the ratio principle, the relationship between the mass and moving velocity of a neutrino 
will be examined. Let the y-axis be the rest mass of the particle 𝑚₀, and the x-axis be the inverse of 
the Lorentz factor corresponding to the particle’s velocity 𝑣, that is, 
 

 
 
(which will hereafter be referred to as the Lorentz quantity). Consequently, if the velocity 𝑣 is 
assigned a value within the range 0 ≤ 𝑣 ≤ 𝑐, where 𝑐 is the speed of light, the value of the x-axis will 
be between 0 and 1. If it is assumed that this graph passes through the origin, its slope represents (𝑣), 
the mass of the particle at velocity 𝑣, as Fig. 5 shows. That is, 
 

  
 



 

 

 
Fig. 5. Relationship between a neutrino’s velocity 𝑣 and its mass (𝑣) (0 ≤ 𝑣 < 𝑐) 

 
When the particle’s velocity 𝑣 is equal to the speed of light 𝑐, the Lorentz quantity is 0, the graph is 
equal to the y-axis, and its height is equal to the rest mass 𝑚₀. What is (𝑐), the mass of the particle 
when its velocity 𝑣 is the speed of light 𝑐? 
 
For particle velocity 𝑣 in the range of 0 ≤ 𝑣 <𝑐, 
 

relativistic mass 𝑚(𝑣) =
non − relativistic mass 𝑚

Lorentz quantityට1 −
𝑣ଶ

𝑐ଶ

 

=
non − relativistic mass 𝑚 + non − relativistic mass 0

Lorentz quantityට1 −
𝑣ଶ

𝑐ଶ

 

= non − relativistic mass 𝑚(𝑣)_
non − relativistic mass 0

Lorentz quantityට1 −
𝑣ଶ

𝑐ଶ

 

= non − relativistic mass 𝑚(𝑣) remainder non − relativistic mass 0 
 
Therefore, if 𝑣=𝑐, 
 

relativistic mass 𝑚(𝑐) =
non − relativistic mass 𝑚

Lorentz quantityට1 −
𝑐ଶ

𝑐ଶ

 

=
non − relativistic mass 0 + non − relativistic mass 𝑚

Lorentz quantity 0
 

= relativistic mass 0_
non − relativistic mass 𝑚

Lorentz quantity 0
 

= non − relativistic mass 𝑚(𝑐) = 0 remainder non − relativistic mass 𝑚 
 

  
 
Consequently, the increase in mass (𝑐) of a particle due to the relativistic effect disappears when the 
particle moves at the speed of light 𝑐, that is, its relativistic mass (𝑐) is 0, and its rest mass 𝑚₀ is 
measured as the non-relativistic mass. 


